Characterization of algebraic polynomial of best
uniform approximation

We are going to solve the problem of approximation in the case of uniform approxi-
mation by means of algebraic polynomials. This problem was solved by P.L. Chebyshev
in the last century with his famous alternation theorem. The problem may be stated as
follows:

Let f € Cla,b] and let E,(f) := infeery [If — dllcfay. Find p € [], such that
E.(f) = ||f = pllcap, where [],, denotes the set of all polynomials of degree n.

In what follows we shall use || - || in place of || - [|¢[s,5 for convenience.
Definition 1. Let f € C[a,b]. The polynomial p € [], is said to realize Chebyshev
alternation for f in [a,b] if there exist n+2 points z;, i = 1,..n+ 2, a < 1 < Tg... <
Tpio < b such that

flx) = p(xi) = e(=1)'|f = pllcias

where the number € is +1 or -1.

The Chebyshev alternation has the following geometric interpretation: if the polyno-
mial p € [],, is said to realize Chebyshev alternation for f € Cfa,b] in [a,b], then p lies
between the two vertical translations of f, ¢(z) = f(x)+||f—p| and ¥ (z) = f(z)—]||f—pl.
Moreover, p alternately touches ¢ and ¢ at least n+2 times. An illustration of Chebyshev
alternation for the case n = 4 is given below.
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Theorem 2. (Chebyshev alternation theorem): Let f € Cla,b]. The algebraic polynomial
p € [, is the polynomial of best uniform approzimation in [[, for f if and only if p
realizes Chebyshev alternation for f in [a,b]

Proof. First let p € [], realize Chebyshev alternation for f in [a,b] and let z;,j =
1,...,n + 2 be the points of as defined in the definition for Chebyshev alternation. Let’s
assume that p is not a polynomial of best uniform approximation , but ¢ € [], is. Then

E.(f)=If —dll <|f—pl

From the above inequality we get
[f () — q()| < [fx5) = plaj)],j=1,.,n+2
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since | f(x;) — p(x;)| = ||f — p||. Then from here we see that

sign(p(z;) — q(x;)) = sign(p(z;) — f(x;) + f(z;) — q(z;))
= sign(p(z;) — f(x;)).

So p—q, which isin [],, takes the sign of p— f. Since these functions are continuous, this
also tells us that p — ¢ has the same zeros as p— f. Since p realizes Chebyshev alternation
for f in [a,b], from the Intermediate Value Theorem we know p — f has at least n + 1
zeros. So p — q has at least n + 1 zeros, which is possible only if p — ¢ = 0, i.e. p = q,
which is a contradiction to the assumption.

Now suppose we have p € [[,, that is of best uniform approximation of f from [],,.
We would like to show that p realizes Chebyshev alternation for f. So assume to the
contrary that m + 2 is the highest number of points x; < x5 < ... < Zy,42 in [a, b] such
that

f(-Tz) _p<xi> = €<_1)in _pH7 1= 17 ey T 27 (1)

where € is +1 or -1 and m<n. We need m to be nonegative in order to continue the proof.
If m was negative (-1 is the only possiblity), then we have just one point, say zq € |[a, b]
so that |f(xg) — p(xo)| = ||f — p|| is achieved. Then from here it is clear that a better
uniform approximation can be achieved in [], simply by a vertical shift of p. So m > 0.

We will just suppose that e = 1, and the proof is similar otherwise. From the assump-
tion about the alternation of p — f on the intervals [x;,z;11] and by the Intermediate
Value Theorem, there exist points &, &1, ..., Emi1, Which satsify a = & < 1 < & < 19 <
€ < oo < &ma1 < Tyao < band f(&) = p(&), fori = 1,...,m + 1. Moreover, we may
choose ; such that for every x € [§;_1,&] we have

(=1 (f(z) —p(z)) > —E,(f), i=1...,m+ 1. (2)

This is illustrated in the figure below for the case m = 4.

Notice in the figure that simply to satisfy f(&;) = p(&;), we are left with 3 different
choices for &, but in order to satisify (2) we simply choose the largest point & between
x9 and xg such that f(&) = p(&). In general, we are able to satisfy (2) in a similar way.
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The main idea from here is to construct a polynomial Q(z) € [],,,; so that Q(z) +
p(x), which is obviously in [ ], , is of better uniform approximation to f(x) than p(z). The
idea is to build the interpolation polynomial Q(x) that interpolates the points (§;,0), i =
1,..m+1so that for x € [§;_1,&], Q(x)— f(x) takes the sign opposite of p(x;)— f(z;), and
|Q(x)]|| is very small. If this is done, then one can see from the illustration below, that
p(z)+Q(z) will squeeze inside of what was assumed to be f(z)+ E,(f) and f(x)—E,(f),
thus creating a polynomial of better approximation. The details of this construction are
all that remains in the proof. A possible polynomial Q(x) to do this job for the same
example that was given above is illustrated here.

Now, since (2) holds on the compact interval [§;_1, ;] for each i, there exists ¢ so that

(=D (f(x) — p(z)) > § — B (f), for x € [§.1,&],i=1...,m+ 1. (3)
Let us set
Q) = (1™ \w &) (&~ ).
where 5
A =g

Note that @ € [],,. Now we would like to show that p 4+ @ is of better uniform approxi-
mation to f than p.
From the definition of Q it follows that

Q)] < |(=1)'6/2| = 6/2 for x € [a, )] (4)
Moreover, we can see verify that for = € [;_1,&;] we have
0 < (=1)'Q(x) (5)

Now combining (1) — (5), on [§;_1,&;] we have the following:

(—=1)'(f(z) = p(x) = Q(x)) > 6 — En(f) — /2
= 6/2 - En(f)
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And obviously f(&) —p(&) — Q(&) =0, fori=1,...,m+ 1. And so it follow that

[f(x) = p(x) = Qx)] < En(f) —6/2

everywhere on [a, b, so that we have ||f —p — Q|| < ||f — pl|, i.e. a contradiction, since

p+Qell,-
0

Theorem 3. Let f € Cla,b]. For every natural number n there exists a unique algrebraic
polynomial p € [], of best uniform approzimation to f in [[,.

Proof. Let p € [],, and g € [],, be two algebraic polynomials of best uniform approxima-
tion to f, i.e.

If =l = 1If —all = En(f) (6)

Then we know that any convex combination of p and ¢ is also of best uniform approxima-
tion. So g = (p+¢q)/2 € [],, is of best uniform approximation to f. So by the Chebyshev
alternation theorem, g realizes Chebyshev alternation for f, i.e there exists n+2 points
Ty t=1,...n+2, a <z <y < Tpyio < b, such that

f@i) = (p(x:) + q(2:))/2 = e(=1)'En(f), i=1,..n+2, (7)

where € =1 or -1.
So then from (7) we then have

En(f) = [f (i) = p(wi) /2 — q(2:) /2] <[f(23)/2 = plaa) /2] + [ [(2:)/2 = q(@:) /2] (8)

fori =1,...,n+2. And from (6) we know that | f(z;)—p(z;)| < E.(f) and | f(z;)—q(x;)| <
E,(f). Thus (7) is possible only if f(x;) — p(x;) = f(x;) — q(z;), i.e. p(z;) = q(x;) for
i =1,..n+ 2. Finally, since p, ¢ € [[,, we must have that p = q. O

Theorem 4. Let f € Cla,bl,p €[], andz;, i=1,...,n+2,a <1 <23 < ... <xp+2 <
b, be n+2 different points in [a,b]. If the difference f —p has alternate signs at the points
ri, t=1,..n+ 2, then

E.(f) > p=min{|f(z;) —p(z;)| :i=1,..n + 2}.

Proof. Let us assume that E,(f) < p. Let ¢ € [],, be the algebraic polynomial of best
uniform approxiamtion to f, i.e. || f — ¢|| = En(f) < p. It follows that

sign(p(z;) — q(z:)) = sign(p(x;) — f(x:) + f(2:) — q(7:)) = sign(p(z;) — f(zi)),

i.e. the sign of p — ¢ takes the sign of p — f at the points z;,7 = 1,...,n + 2. Therefore
since p — f has alternate signs at n+2 points, so does p — ¢. Thus p — ¢ € [],, has n+1
zeros by the Intermediate Value theorem. So p = ¢, contradicting

If =4l = Ea(f) << |If =pll



