
Characterization of algebraic polynomial of best
uniform approximation

We are going to solve the problem of approximation in the case of uniform approxi-
mation by means of algebraic polynomials. This problem was solved by P.L. Chebyshev
in the last century with his famous alternation theorem. The problem may be stated as
follows:
Let f ∈ C[a, b] and let En(f) := infq∈

Q
n
‖f − q‖C[a,b]. Find p ∈

∏
n such that

En(f) = ‖f − p‖C[a,b], where
∏

n denotes the set of all polynomials of degree n.
In what follows we shall use ‖ · ‖ in place of ‖ · ‖C[a,b] for convenience.

Definition 1. Let f ∈ C[a, b]. The polynomial p ∈
∏

n is said to realize Chebyshev
alternation for f in [a, b] if there exist n+2 points xi, i = 1, ...n + 2, a ≤ x1 < x2... <
xn+2 ≤ b such that

f(xi)− p(xi) = ε(−1)i‖f − p‖C[a,b]

where the number ε is +1 or -1.

The Chebyshev alternation has the following geometric interpretation: if the polyno-
mial p ∈

∏
n is said to realize Chebyshev alternation for f ∈ C[a, b] in [a, b], then p lies

between the two vertical translations of f , ϕ(x) = f(x)+‖f−p‖ and ψ(x) = f(x)−‖f−p‖.
Moreover, p alternately touches ϕ and ψ at least n+2 times. An illustration of Chebyshev
alternation for the case n = 4 is given below.

Theorem 2. (Chebyshev alternation theorem): Let f ∈ C[a, b]. The algebraic polynomial
p ∈

∏
n is the polynomial of best uniform approximation in

∏
n for f if and only if p

realizes Chebyshev alternation for f in [a, b]

Proof. First let p ∈
∏

n realize Chebyshev alternation for f in [a, b] and let xj, j =
1, ..., n + 2 be the points of as defined in the definition for Chebyshev alternation. Let’s
assume that p is not a polynomial of best uniform approximation , but q ∈

∏
n is. Then

En(f) = ‖f − q‖ < ‖f − p‖

From the above inequality we get

|f(xj)− q(xj)| < |f(xj)− p(xj)|, j = 1, .., n+ 2
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since |f(xj)− p(xj)| = ‖f − p‖. Then from here we see that

sign(p(xj)− q(xj)) = sign(p(xj)− f(xj) + f(xj)− q(xj))

= sign(p(xj)− f(xj)).

So p−q, which is in
∏

n, takes the sign of p−f . Since these functions are continuous, this
also tells us that p−q has the same zeros as p−f . Since p realizes Chebyshev alternation
for f in [a, b], from the Intermediate Value Theorem we know p − f has at least n + 1
zeros. So p − q has at least n + 1 zeros, which is possible only if p − q ≡ 0, i.e. p = q,
which is a contradiction to the assumption.

Now suppose we have p ∈
∏

n that is of best uniform approximation of f from
∏

n.
We would like to show that p realizes Chebyshev alternation for f . So assume to the
contrary that m + 2 is the highest number of points x1 < x2 < ... < xm+2 in [a, b] such
that

f(xi)− p(xi) = ε(−1)i‖f − p‖, i = 1, ...,m+ 2, (1)

where ε is +1 or -1 and m<n. We need m to be nonegative in order to continue the proof.
If m was negative (-1 is the only possiblity), then we have just one point, say x0 ∈ [a, b]
so that |f(x0) − p(x0)| = ‖f − p‖ is achieved. Then from here it is clear that a better
uniform approximation can be achieved in

∏
n simply by a vertical shift of p. So m ≥ 0.

We will just suppose that ε = 1, and the proof is similar otherwise. From the assump-
tion about the alternation of p − f on the intervals [xi, xi+1] and by the Intermediate
Value Theorem, there exist points ξ0, ξ1, ..., ξm+1, which satsify a = ξ0 ≤ x1 < ξ1 < x2 <
ξ2 < ... < ξm+1 < xm+2 ≤ b and f(ξi) = p(ξi), for i = 1, ...,m + 1. Moreover, we may
choose ξi such that for every x ∈ [ξi−1, ξi] we have

(−1)i(f(x)− p(x)) > −En(f), i = 1...,m+ 1. (2)

This is illustrated in the figure below for the case m = 4.

Notice in the figure that simply to satisfy f(ξi) = p(ξi), we are left with 3 different
choices for ξ2, but in order to satisify (2) we simply choose the largest point ξ2 between
x2 and x3 such that f(ξi) = p(ξi). In general, we are able to satisfy (2) in a similar way.
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The main idea from here is to construct a polynomial Q(x) ∈
∏

m+1 so that Q(x) +
p(x), which is obviously in

∏
n, is of better uniform approximation to f(x) than p(x). The

idea is to build the interpolation polynomial Q(x) that interpolates the points (ξi, 0), i =
1, ...m+1 so that for x ∈ [ξi−1, ξi], Q(x)−f(x) takes the sign opposite of p(xi)−f(xi), and
‖Q(x)‖ is very small. If this is done, then one can see from the illustration below, that
p(x)+Q(x) will squeeze inside of what was assumed to be f(x)+En(f) and f(x)−En(f),
thus creating a polynomial of better approximation. The details of this construction are
all that remains in the proof. A possible polynomial Q(x) to do this job for the same
example that was given above is illustrated here.

Now, since (2) holds on the compact interval [ξi−1, ξi] for each i, there exists δ so that

(−1)i(f(x)− p(x)) > δ − En(f), for x ∈ [ξi−1, ξi], i = 1...,m+ 1. (3)

Let us set
Q(x) = (−1)m+1λ(x− ξ1) · · · (x− ξm+1),

where
λ =

δ

2(b− a)m+1
.

Note that Q ∈
∏

n. Now we would like to show that p+Q is of better uniform approxi-
mation to f than p.

From the definition of Q it follows that

|Q(x)| ≤ |(−1)iδ/2| = δ/2 for x ∈ [a, b] (4)

Moreover, we can see verify that for x ∈ [ξi−1, ξi] we have

0 < (−1)iQ(x) (5)

Now combining (1)− (5), on [ξi−1, ξi] we have the following:

(−1)i(f(x)− p(x)−Q(x)) > δ − En(f)− δ/2
= δ/2− En(f)
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And obviously f(ξi)− p(ξi)−Q(ξi) = 0, for i = 1, ...,m+ 1. And so it follow that

|f(x)− p(x)−Q(x)| < En(f)− δ/2

everywhere on [a, b], so that we have ‖f − p − Q‖ < ‖f − p‖, i.e. a contradiction, since
p+Q ∈

∏
n .

Theorem 3. Let f ∈ C[a, b]. For every natural number n there exists a unique algrebraic
polynomial p ∈

∏
n of best uniform approximation to f in

∏
n.

Proof. Let p ∈
∏

n and q ∈
∏

n be two algebraic polynomials of best uniform approxima-
tion to f, i.e.

‖f − p‖ = ‖f − q‖ = En(f) (6)

Then we know that any convex combination of p and q is also of best uniform approxima-
tion. So g = (p+ q)/2 ∈

∏
n is of best uniform approximation to f . So by the Chebyshev

alternation theorem, g realizes Chebyshev alternation for f , i.e there exists n+2 points
xi, i = 1, ..., n+ 2, a ≤ x1 < x2 · · · < xn+2 ≤ b, such that

f(xi)− (p(xi) + q(xi))/2 = ε(−1)iEn(f), i = 1, ..., n+ 2, (7)

where ε = 1 or -1.
So then from (7) we then have

En(f) = |f(xi)− p(xi)/2− q(xi)/2| ≤ |f(xi)/2− p(xi)/2|+ |f(xi)/2− q(xi)/2| (8)

for i = 1, ..., n+2. And from (6) we know that |f(xi)−p(xi)| ≤ En(f) and |f(xi)−q(xi)| ≤
En(f). Thus (7) is possible only if f(xi) − p(xi) = f(xi) − q(xi), i.e. p(xi) = q(xi) for
i = 1, ...n+ 2. Finally, since p, q ∈

∏
n we must have that p = q.

Theorem 4. Let f ∈ C[a, b], p ∈
∏

n and xi, i = 1, ..., n+2, a ≤ x1 < x2 < ... < xn +2 ≤
b, be n+2 different points in [a, b]. If the difference f − p has alternate signs at the points
xi, i = 1, ...n+ 2, then

En(f) ≥ µ = min{|f(xi)− p(xi)| : i = 1, ...n+ 2}.

Proof. Let us assume that En(f) < µ. Let q ∈
∏

n be the algebraic polynomial of best
uniform approxiamtion to f , i.e. ‖f − q‖ = En(f) < µ. It follows that

sign(p(xi)− q(xi)) = sign(p(xi)− f(xi) + f(xi)− q(xi)) = sign(p(xi)− f(xi)),

i.e. the sign of p − q takes the sign of p − f at the points xi, i = 1, ..., n + 2. Therefore
since p − f has alternate signs at n+2 points, so does p − q. Thus p − q ∈

∏
n has n+1

zeros by the Intermediate Value theorem. So p = q, contradicting

‖f − q‖ = En(f) < µ ≤ ‖f − p‖.
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