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Theorem 1 (Whitney, 1957). Let 0 < p < oo, f € Lyla,b], and k > 1. Then there exists a polynomial
Q € Py_1 such that

b—a
If = Qllz,ap) < cwr (f; k) ;

p

where ¢ = c(k, p).

We will be interested in the case 0 < p < 1. The case whenever 1 < p < oo is well known. We do give
the proof of p = oo, as well as the case when k£ = 1,0 < p < oo, because they are both needed in the proof
for 0 < p < 1. We note here that a simple change of variables shows that it is sufficient to prove the theorem
only in the case [a,b] = [0, 1]. Therefore for the remainder of the paper we are always in [0, 1].

Proof in the case p = co. Assume f € L.(0,1). We shall make use of the Steklov function, fin, as an
intermediate approximation:

) = e [ /Ohm/oh}ijl(—l)”“ (5) 76+ vton + -+ -

As we have seen before,

If = fenll01) < wk(f;h)oo, (1)
£ 2 0,1) < ek wio(f5 ) oo 2)

Let xo € [0, 1] and set

x —x9)

k—1 (
Qz) = Z flgjjf)b(l'O)T7
v=0 .

i.e. Q(z) is the (k-1)st order Taylor expansion of fi j about xg and Q(x) € P,_1. Moreover, it can easily be
seen using induction on k that

funle) = Q) = sy [ = 0 = 980 + ),

k-1

hence i
1fin = Qo) < 1F e 0.1

From this estimate, (1) and (2), setting h = 1/k we get

1f = Qllco < IIf = frnlloo + [ frn — Qlloe < c(k)wr(f; 1/k)oo-
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Lemma 2. Let f € Ly[a,b], 0 < p < co. Then there exists a constant ¢ such that

17—l < 5 / / () — Fl)Pdady 3)
b—a b—t

/ / @+ 1) — f@)Pdedt < 2n(f5b— a)l, (4)
0 a

“b-a
Proof. Consider the function

0= [ 15 - sPa, vl
Then clearly there exists yo € [a, b] such that
< / oly
Therefore, if we set ¢ = f(yo) we obtain
[ 15w —arar < o [ 15w - sy o)
( A / )~ swpaies [ [ 15 |pda:dy>

We shall handle each of the integrals above. For the seconde integral, using a substitution y — x = u and
then switching the order of integration, we obtain

/ / |f(z |pdyd$—/ /b ’ f(u—z)Pdudz
/b a/b ' u) + f(u+ z)|Pdzdu. (6)

Similarly for the first integral, with just one extra substituion, we obtain

[ [ e - swpae= [ [ 15w - s - wpaus
/Ob a/u+a f(z —w)|Pdzdu

= /0 o / " “ 1w+ ) — f(w)Pdwdu (7)

Combining (5), (6), and (7) completes the proof. O

Lemma 3. Let f € Ly[0,1], 0 < p < 1. Then for every natural number n > 1 there exists a step-function
©n with jumps at the points, i/n = x;, i =1,...,n — 1, such that

1/n pl—t
= gon||p<2n/ / fla+t) — f@)Pdedt, i=1,....n.
0

Proof. By lemma 2 there exist constants ¢;,7 = 1,...,n such that

x; 1/n T;—t
/ |f(x)fci|pdx§2n/ / |f(x+1t)— f(x)|Pdadt,i =1,...,n
T 0 Ti—1

1—1

Then clearly the step function ¢,, = ¢; for € (z;—1,x;),i = 1,...,n, satisfies the lemma. O
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Lemma 4. Let f € L,[0,1],0<p<1,k>1,and 0<§ < %H Then we have:

i 1/(k+1) A dt
(R0 <08 ([ e (T + I

Proof. We shall first verify the following identity that we will be using:

k—1 k+1

Affla)=27" | AL f(e) =D D fla+ih)

1=0 j=i+1

Recall that we may show by induction that

Ak i: Z_: i: hf z+ (v1 +va+---F+up)h).

Hence
1 1 1
Al f(x) :ZZ Z AR f(x+ (01 +va + -+ + vp)h)

k
>A§f(z+h) 4+t (k>A’,§f(x+kh).
We also have the identity,

j—1
A f(x+ jh) = Aff(z) + > AR f(a + ih).

i=0
This may be proven directly or by a simple induction arguement on k. Then by (10) and (11)

k
At = 3 (1) absta+n

j=1 Y
k—1 k k

=2AF @)+ >0 > (,)Aﬁ“f(xﬂh)
i=1 j=i+1 J

which implies (9).
We make use of the function,

1/2
Qp(6), = Sup ( /O |ALf (x)lpdx>

By (9) and since 0 < p < 1, we get

AP <20 (Ab s+ 3 3 (5) e s

=0 j=1i+1
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Now for 0 < h < 4 < ﬁ,o <x<1/2 and i <k — 1 we have z + ¢h < 3/4, thus we obtain
1/2 k-1 'k E\P 1/2
Q82 < sup 27FP / AL f@P >0 > ( ) 2% sup / |ARHLf (2 4 ih)|Pd
0<h<é 0 =0 j=it1 0<h<6é.Jo
< 270y (26)F + Cuwppr (f;0)5, (12)
where C' = C(k,p). Let r > 1 and 0 < § < 1/(2""1k). Then by (12) we have for i =0,1,...,r —1
2P0 (2'6)) < 27 FPUHDQ (27H16)D 4+ C27FP w4 (f,2°6)8.

Summing the inequalities over ¢ = 0,1,...,r — 1 and cancling terms seen on both the right side and left side
of the inequality we get

r—1

Qi (8)h < 27FP7Q(270)8 + C Y 27 Pl (f3t)8
1=0

r—1
< 2 kD) £ 4 clakpz/
i=172

275 dt
= 2 kD f|2 4 Oy / e (505
1)

2it1s

dt
P (f5 ) —

t
e t

The second inequality above follows from the simple inequality Q4 (5), < 2¥||f|l,, for 6k < 1/2. From here
simply note that wy,(f;8)h < 20 ()b, hence

276

dt
anlf: ) <227 fp g s [ e (0 (13)
)

Let 0 < 6 < 1/4k. Choose 7 > 1 such that 1/2"2k < § < 1/2"*'k. Then by (13) we obtain

i 1/4k i dt
anlfs0 <8 [ (g T+ 11

which gives the lemma O
Corollary 5 (Marchaud). Let f € L,[0,1], 0<p<1,m>k>1, and 0 < < 1. Then we have
p kp ' —kp pdt P

Proof. We shall prove it by induction with respect to m. The inequality holds for m = k£ + 1 by the previous
lemma.
Suppose that it holds for some m > k + 1. Then we obtain,

1
w80 < O3 ( [ttt g+ ||f||£>

5
1 1
< oot ([Feomrostr [ tannrioga+ 151 + 1717) (1)
5 t
< C, 6k 1 t—kp it pdt 4 15
>~ L1 s Wm+1(fv )p? + ||f||p ’ ( )
where in (14) we applied lemma 4 and in (15) we apply the Hardy inequality. O
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Proof of theorem 1 in the case 0 < p < 1. Suppose the theorem does not hold. Then there exists a sequence
of functions {fn }2°_1, fm € Ly(0,1), such that

inf — b ;1/k)P =1,2,...
QGHI%k-fl ”fm QHp > ka(fm, /k);m m » 4

Since the set of all polynomials @ € Py_; such that |Q|, < 1is a compact set in L,(0,1), then for each m
there exists a polynomial Q,, € P;_1 such that

Hfm - Qm”p = Qei%f_l ”fm - QHP' (16)

Consequently
Hfm_Qm||§>mwk(fm§1/k)g> m=12,...
We will set
Gm = fm B Qm
[ fm = Qmllp
Then it is clear that
S lgm = @llp = llgmlly = 1 a7)

and by (16) we have

we(gm; k™0 <1/m, m=1,2,... (18)

We shall prove that {g,,}{° is a precompact set in L,(0,1), i.e. there exists a function g € L, and a subse-
quence {gm, }3° such that ||g — gm, ||, — 0 as i — oo. To this end it is sufficient to prove that for all € > 0
there exists a finite e-net for {g,,}7° in L,(0,1).

It follows from corollary 5 with & = 1,m = k and (17), (18) that

ool 1
W1 (gm;0)h < co? (/ t_pdt-i-1> <a (+5p)
5 m t m

for 0 < <1and m=1,2,.... Therefore if follows that for each € > 0 there exists mg > 0 and &g > 0 such
that
wi(gm;6)p <e for 0<d <dp and m > mo. (19)

Fix n > 1/6p. Then by lemma 3 and (19) that for each m > my there exists a step function ¢y, ,, with points
of discontinuity ¢/n,i = 1,...,n — 1, such that

1gm — @mnlh < 2wi(gm;n~")b < 26 (20)
On the other hand by (17) and (20) we get

H‘Pm,nng < Hgm”Z + [|gm — ‘Pm,nng <1+ 2e.

Since Y, n(x) is constant for x € ((i — 1)/n,i/n),i=1,...,n, for m > mgy we have

i—.5
Spm,n n
1/"L l/p
<n / |@m,n<x>pdw>
1 (i—1)/n
n i/n 1/p
< n/ |©m.n Pdw)
(; (i-1)/n

n/P(1/n)/P

lomnlleo <
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Now consider the set ¥ of all step functions ¢ of the type

1 g
d(x) = re'/?, me(zn ,;), i=1,...,n, r=0,%£1,..., |[d]lcc <M.

Clearly
1
; _ P < 1/pyp —
it 60 =015 < [ (@77 =
and therefore W is an e-net for the set {¢n n o=y, +1- From this and (20) it follows that

388 g = 61 < lgm — bmnll + int 6 — 01 < 3c,

hence W is a 3e-net for {gum }oo—pmo+1- Thus {gm }ry—m,+1 18 @ precompact set in L,,(0, 1). So for an appropriate
subsequence {gm, }72, there exists g € L,(0, 1) such that ||gm, — g|l, = 0 as i — oco. Hence, in view of (17)
we have

inf g —QlIp = inf |lgm, — @I}~ llg = gm,

g—>1 as 1 — 00

QEPy QEP,_
and
inf —Q|? < inf = QP —gm. |2 =1 | — 0.
ol llg—Qlp < if llgm, — QI +llg = gm. 17 as i =00
Therefore
inf -Q|P=1. 21
odnf g — @l (21)

On the other hand by (18) we get

wi(g k)5 < wilgm, i k7N +wi(g — gm,s k71
< wk(gmi; kil)g + Qkp”g — 9m;

5%0 as 1 — oo.

Thus w(g; k’l)p = 0. As we shall show below this equality implies that ¢ = @Q a.e. for some Q € Py_1,
which contradicts (). O

Lemma 6. Let f € L,(0,1),0 <p <1, and wi(f;k~'), = 0. Then there exists a polynomial Q € Py_1 such
that f = Q almost everywhere in [0, 1].

Proof. We shall prove the lemma by induction with respect to k. In the case k = 1, the lemma follows by
lemma 2. Now suppose the lemma holds for some k£ > 1. Suppose that

1—(k+1)h
wr1 (f; (K + 1)_1)5 = sup / |Aﬁ+1f(x)|pdx =0. (22)
0<h< (k1)1

First we shall prove that

1—khi—h
/ |A} ALf(z)Pde =0, hy,h >0, khi+h<1. (23)
0

If hy = ah and o = m/n for some m,n € Z*1, then appling the identity from lemma 4 twice we obtain

=

m—1

>

3

P
|A(m/n)h Wf(@)P <

M

h
AL A hn ( (Ul+"'+vk)>

P

3
|

<
S
I
=)
Sd
Eal
>—‘o

h
Ah/nZAh/n ( n(v1+"'+vk+7})>

v1=0 v =0
m—1 m—1n—1 h p
k 1
< DA S < n(v1+-~+vk+v)>
v1=0 v =0 v=0
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Integrating with respect to z € [0,1 — (km/n + 1) + h] and using (22) we conclude that (23) holds true.
No we need to show it holds true for irrational numbers a. So suppose that h; = ah, a > 0 and irrational
number. Choose a sequence {a;}52; of rational numbers such that a; = « and 0 < a; < a. We have

AL AL f(2)] < |AgihAi1Lf(37)| +|AE, AL f(z) — AiihA;lLf(xﬂ
k

= |AL AL f(2)] + Z (I;)A;ll (f(z +vah) — f(x +vo;h))
v=0

< |Aak AL |+Z<>|fx+vah+h) f(z +vah + h))|
v=0

+ |[f(x +vah) — f(z + vaih)|)

_|AE AL |+Z() L@ A WAL F )]
Therefore

1—kah—h 1—ka;h—h
[ sk < A8, ALF @)+ elh Pl (S Ko — @b
0 0

= c(k,p)wi(f; k(o — ai)h),’i, (24)
where we have used that (23) holds for «; a rational number. Since wq(f;d), — 0 as 6 — 0 (24) implies

(23). O
Now since (23) holds, we have g(z) = A}, f(z) is such that

1—khi1—h
/ AF g@)P =0, hih>0, khi+h<l,
0

hence in view of our induction hypothesis, g(z) is equal to a polynomial of degree k —1 a.e. for « € [0,1 — h].
There for there exists a polynomial @), € Px_1 such that

flz+h) Z ay(h (25)

v=0

almost everywhere in [0,1 — AJ.
We shall prove that each coefficient a,(h) is a continuous function of h € [0,1). Let 0 < h; < hy < 1. Then

we note that
k—1

floth) = f+ho) =) (au(hn) = ay(ha))z". (26)

v=0
We note that for P(x) € P,_1[0,b],b > 0, where P(z) = Zf 01 cyx’, we have the following as norms:

k—1

1Pl = feulbI”

v=0

b 1/p
| P2 := <2/0 |P(x)|de> .
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Since all norms on a finite dimensional space are equivalent, we may apply this to (26) to obtain

1/p

k—1 1 1—hy
Zl%(hl)—av(w1—h”<c(1_h2/0 f(x+h1)—f(fv+hz)l”dx>

v=0

1
<a (1 e (Filin = h2|)§> :

Since w1 (f;9), — 0, it follows that a,(h) is a continuous function of h € [0,1).
Applying an arbitrary (k + 1)th difference A¥™! to (25) as a function of h we obtain

k—1
AR (@ + ) = S (AF gy (h)a"

v=0

for almost all x € (0,1 —h—(k+1)t) and ¢t,h > 0,h+ (k+ 1)t < 1. By our initial assumptions, for almost all
€ (0,1—h—(k+1)t),h+ (k+ 1)t < 1, we have Aj ! f(x) = 0, and since a,(h) is a continuouse function
of h we have

Afla,(h) =0, 0<h<l—(k+1)t, 0<t<1/(k+1), v=0,....,k—1.

Since we have already proven Whitney’s theorem for p = oo, we conclude that a,(h) coincides with some
polynomial Q(h) € Py, for all h € [0,1),v =0,...,k— 1. In view of (25), we conclude that f(z+ h) coincides
with a polynomial in Py as a function of A. This gives the lemma.



