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Introduction
The Radon transform is the integral transform, which in Rd consists of the integral of a function f over all
d − 1 dimensional hyperplanes. An important problem in image processing is the reconstruction problem.
That is, can one recover the function f given the Radon transform, Rf? Being able to provide a fast and
accurate solution to this problem is vital in X-ray computed tomography (CT), ultrasound CT, astronomy,
and electron microscopy, to name a few. For example, in an X-ray or MRI scan, the function f we are
interested in is the image of the object being scanned. Whenever the scanning process occurs, only the
values of the Radon transform of f are found. Thus we need to be able to accurately recover f from only
some knowledge of it’s Radon transform. In this paper we will give the solution to this problem, along with
some applicable tools for reconstruction.

Definition of the Radon Transform
In R2 we may write any line L uniquely as the set of ordered pairs (x, y) satisfying t = x cosω + y sinω, for
some fixed t ∈ [0,∞) and ω ∈ [0, 2π). Here and throughout the paper we let ξ denote a unit vector in R2,
and in particular ξ := (cosω, sinω). Then we write the line L as the set of (x, y) satisfying x · ξ = t, where
x is defined to be (x, y). Then we have the Radon transform

Rf := f̌(t, ξ) :=

∫
x·ξ=t

f(x, y)ds,

i.e. the integral of f over lines in R2. Now, one can verify that we may write the line L parametrically as a
function of s as

x = t cosω − s sinω

y = t sinω + s cosω.

Therefore, we may write the Radon transform as

f̌(t, ξ) =

∫ ∞
−∞

f(t cosω − s sinω, t sinω + s cosω)ds

=

∫ ∞
−∞

f(tξ + sξ⊥)ds,

where ξ⊥ = (− sinω, cosω). In many practical applications we do not need to integrate over the entire space,
since our function f will have finite support.
Finally, we have one more equivalent form given by

f̌(t, ξ) =

∫∫
R2

f(x, y)δ(t− ξ · x)dxdy,
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where δ is the Dirac delta function. This form can be useful when showing how the Radon transform behaves
under translations and dilations of f .

Example 1. Let f(x, y) = e−x
2−y2 . Then,

f̌(t, ξ) =

∫∫
R2

e−x
2−y2δ(t− ξ · x)dxdy.

Now making the orthogonal linear transformation

u = ξ · x
v = ξ⊥ · x

we have

f̌(t, ξ) =

∫ ∞
−∞

∫ ∞
∞

e−u
2−v2δ(t− u)dudv

= e−t
2

∫ ∞
−∞

e−v
2

dv

=
√
πe−t

2

.

Using a similar transformation in higher dimensions for the function f(x1, . . . , xd) = exp(−x2
1 + · · ·+−x2

n)
yields

f̌(t, ξ) = (
√
π)n−1e−t

2

Relation to the Fourier Transform
The Fourier transform of f(x), where x ∈ Rd, is defined as

Ff := f̂(k) =

∫
Rd

f(x)e−i2πk·xdx.

We do not go into detail here with the appropriate space of functions on which F is defined. We simply
assume that f is nice enough (for example, f may be a Shcwartz function). It well known that the inverse
Fourier transform exists and is given by

F−1f̂ := f(x) =

∫
Rd

f̂(k)ei2πk·xdk.

To connect the Fourier transform with the Radon transform, we first observe that we may rewrite the Fourier
transform as

f̂(k) =

∫ ∞
−∞

∫
Rd

f(x)e−i2πtδ(t− k · x)dxdt,

and for any s 6= 0 we have δ(sx) = δ(x)
|s| , which the reader may verify. Then

f̂(sξ) =

∫ ∞
−∞

∫
Rd

f(x)e−i2πtδ(t− sξ · x)dxdt

=

∫ ∞
−∞

∫
Rd

f(x)e−i2πspδ(sp− sξ · x)dxdp|s|

=

∫ ∞
−∞

∫
Rd

f(x)e−i2πspδ(p− ξ · x)dxdp

=

∫ ∞
−∞

(∫
Rd

f(x)δ(p− ξ · x)dx

)
e−i2πspdp.
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Notice that the inner integral is just the Radon transform of f . Thus we have established the following
relationship between the transforms:

f̂(sξ) =

∫ ∞
−∞

f̌(t, ξ)e−i2πstdt

Since the Fourier transform is invertible, this identity at the very least shows the existence of f , but does
not give a simple formula for recovering f . Explicit inversion formulas (depending on whether the dimension
is even or odd) do exist, but we will not show them here. Instead the remainder of the paper will focus
on building some practical tools that may be used for the reconstruction. We digress here to mention some
classical results in approximation theory. These results will be useful for what we need.

Some Classical Approximation Theory Results
In this section and the next we write D to represent the unit disk in R2.

Definition 2. We say the sequence of functions {Kn}∞n=1 is a summability kernel if∫
R
Kn(t)dt = 1 ∀n

and for all ε > 0,

lim
n→∞

∫
|t|>ε

Kn(t)dt = 0.

Theorem 3. Let {Kn}∞n=1 be a summability kernel and let f ∈ Lp(R). Then

‖Kn ∗ f − f‖p −→ 0

and
Kn ∗ f(x) −→ f(x) a.e.,

as n→∞.

Proof. See lecture notes on 9/28/2012.

Lemma 4. The sequence of functions

Pn(x, y) :=

{
n+1
π (1− x2 − y2)n, (x, y) ∈ D

0, otherwise

n = 1, 2, . . . , is a summability kernel in R2.

Proof. First we have,
π

n+ 1

∫∫
R2

Pn(x)dxdy =
π

n+ 1

∫∫
D
Pn(x)dxdy =

∫∫
D

(1− x2 − y2)ndxdy

=

∫∫
D

(1− r2)nrdrdθ =

∫ 2π

0

∫ 1

0

n∑
k=0

(−r2)k
(
n

k

)
rdrdθ

=

n∑
k=0

(−1)k
(
n

k

)∫ 2π

0

∫ 1

0

r2k+1drdθ

=

n∑
k=0

(−1)k
(
n

k

)
2π

2k + 2
= π

n∑
k=0

(−1)k
n!

(k + 1)!(n− k)!

= − π

n+ 1

n+1∑
k=1

(−1)k
(
n+ 1

k

)
= − π

n+ 1

(
n+1∑
k=0

(−1)k
(
n+ 1

k

)
− 1

)
= − π

n+ 1

(
(1− 1)n+1 − 1

)
=

π

n+ 1
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Thus we have shown ∫∫
R2

Pn(x)dxdy = 1, for all n. (1)

Secondly, fix some 0 < ε < 1. Then similar to the computations above we have,

π

n+ 1

∫∫
|x|>ε

Pn(x)dxdy =

∫∫
ε<|x|<1

(1− x2 − y2)ndxdy

=

∫ 2π

0

∫ 1

ε

(1− r2)nrdrdθ

=

n∑
k=0

(−1)k
(
n

k

)
2π

2k + 2
(1− ε2k+2)

=
π

n+ 1

(
n+1∑
k=1

(−1)k−1

(
n+ 1

k

)
+

n+1∑
k=1

(−ε2)k
(
n+ 1

k

))

=
π

n+ 1

(
−
n+1∑
k=0

(−1)k
(
n+ 1

k

)
+

n+1∑
k=0

(−ε2)k
(
n+ 1

k

)
+ 1− 1

)
=

π

n+ 1

(
−(1− 1)n+1 + (1− ε2)n+1

)
=

π

n+ 1
(1− ε2)n+1.

This computation shows ∫∫
|x|>ε

Pn(x)dxdy = (1− ε2)n+1 −→ 0 as n→∞. (2)

Thus (1) and (2) together complete the proof.

Theorem 5 (Weierstrauss approximation theorem). The set of all 2 dimensional polynomials over the disk
is dense in the space C(D). That is, for all ε > 0 and for any f ∈ C(D) there exists n such that

inf
P∈Pn(D)

‖f − P‖C(D) < ε.

Proof. We may extend f over all of R2 so that we have f ∈ C(R2) ∩ L2(R2). Now, let {Pn}∞n=1 be the
sequence of polynomials defined in lemma 4, and consider the sequence of functions {fn}∞n=1, where

fn(x) := f ∗ Pn(x) =

∫∫
D
f(y)Pn(x− y)dy.

Then since {Pn}∞n=1 is a summability kernel, it follows from theorem 3 that fn(x) converges to f(x) almost
everywhere as n tends to ∞. Therefore, on the compact disk D, fn converges to f uniformly. Hence, there
exists n such that

‖f − fn‖C(D) < ε (3)

for any given ε > 0. Lastly, we note that by definition, fn must be a polynomial of degree 2n over D, and
the theorem then follow from (3).

Theorem 6. The Chebyshev polynomial Tn(x) := cos(n arccosx) is equivalent to a polynomial of degree n.
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Proof. The proof is by induction. Certainly we have T0(x) = 1 and T1(x) = x.
Claim: Tn(x) = 2xTn−1(x)− Tn−2(x) for n ≥ 2.
Well, using some simple trigonometric identities we have

Tn(x) + Tn−2(x) = cos(n arccosx) + cos((n− 2) arccosx)

= 2 cos(arccosx) cos((n− 1) arccosx)

= 2xTn−1(x).

This identity completes the proof.

Approximation using ridge polynomials
In this section, we will find properties of ridge polynomials and show how they may be used to reconstruct
a function from its (semi-discrete) Radon transform. If f, g ∈ L2(D), we define the inner product

〈f, g〉 :=
1

π

∫∫
D
f(x) ¯g(x)dx,

which also induces the norm in L2(D). We will be using the Chebyshev polynomials of second kind for
approximation in L2(D). These functions are given by

Um(t) :=
sin(m arccos t)

sin(arccos t)
, m = 1, 2, . . . , .

Certainly these are only univariate functions. However, we let Ωm := {kπ/m : k = 1, 2, . . . ,m} and instead
use the functions

Uωm(x) := Um(x · ξ), x ∈ D ω ∈ Ωm,

for approximation, where ξ := (cosω, sinω).
By differentiation of the Chebyshev polynomial Tm(t) defined in theorem 6, one finds that T

′

m(t) = Um(t).
Therefore, Um(t) is equivalent to a polynomial of degree m−1, thus Uωm ∈ Pm−1(D), where Pm−1(D) denotes
the set of polynomials of degree m− 1 over the disk. This fact will be very important in showing that these
functions may be used for approximation over the disk.

Lemma 7. The set of functions
{Uωm : ω ∈ Ωm, m = 1, 2, . . . , }

are orthonormal with respect to the inner product on L2(D), i.e.

〈Uαm, Uβn 〉 = δm,nδα,β .

Proof. This proof will involve showing two facts. We will show first that∫
D
UαmU

β
mdx = δα,β for α, β ∈ Ωm, (4)

and secondly that ∫∫
D
xkyjUωmdxdy = 0 for k + j < m− 1, and ω ∈ Ωm. (5)

We see that (5) says Uωm is orthogonal to all polynomials of degree less than m − 1 over D. Recalling that
Uωm is a polynomial of degree m− 1, (5) holding true tells us that if n < m that 〈Uαn , Uβm〉 = 0, regardless of
α and β. To this end, showing (4) and (5) will complete the proof.
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To begin note that any integral over D is rotational invariant, so without loss of generality we will assume
β = 0. Then we have∫

D
UαmU

β
mdydx =

∫ 1

−1

∫ √1−x2

−
√

1−x2

Um(x cosα+ y sinα)Um(x)dydx

=

∫ 1

−1

(∫ √1−x2

−
√

1−x2

Um(x cosα+ y sinα)dy

)
Um(x)dx.

We will compute the inner integral with respect to y first. We make the substitution x = cos t for x, then
u = cos t cosα+ y sinα for y, and finally u = cos v for u:∫ √1−x2

−
√

1−x2

Um(x cosα+ y sinα)dy =

∫ sin t

− sin t

Um(cos t cosα+ y sinα)dy

=
1

sinα

∫ cos(t−α)

cos(t+α)

Um(u)du

=
1

sinα

∫ t+α

t−α
Um(cos v)sin(v)dv

=
1

sinα

∫ t+α

t−α
sinnvdv

=
2 sin(mt) sin(mα)

m sinα
.

The last line follows from simple computations and trigonometric identities. Now, returning back to the
original integral, and keeping the substitution x = cos t we have∫∫

D
UαmU

0
mdxdy =

∫ 1

−1

∫ √1−x2

−
√

1−x2

Um(x cosα+ y sinα)Um(x)dydx

=

∫ π

0

2 sin(mt) sin(mα)

m sinα
Um(cos t) sin tdt

=
2 sin(mα)

m sinα)

∫ π

0

sin2mtdt

= π
sin(mα)

m sinα
,

where again the last line follow by some simple computations. Now notice that the above is 0 for α =
kπ
n , k = 1, 2, . . . , n− 1 and π for α = 0, which was precisely what we wanted.

Now to show (5) we will again use the fact that the integral of the disk is rotational invariant. So, without
loss of generality, let ω = 0 and k + j < m− 1. Then we have∫∫

D
xkyjUωmdydx =

∫ 1

−1

∫ √1−x2

√
1−x2

xkyjUm(x)dydx

=
1

j + 1

∫ 1

−1

xkUm(x)
(

(1− x2)(j+1)/2 − (−1)j+1(1− x2)(j+1)/2
)
dx.

From here we have 2 cases. If j is odd, then∫∫
D
xkyjUωmdydx =

1

j + 1

∫ 1

−1

xkUm(x)
(

(1− x2)(j+1)/2 − (1− x2)(j+1)/2
)
dx = 0.

6



Radon Transform

If j is even, we again will make the useful substitution x = cos t, and we have∫∫
D
xkyjUωmdydx =

2

j + 1

∫ 1

−1

xk(1− x2)j/2
√

1− x2Um(x)dx

=
2

j + 1

∫ 1

−1

xk

 j/2∑
p=0

(−1)px2p

(
j/2

p

)√1− x2Um(x)dx

=
2

j + 1

j/2∑
p=0

(−1)p
(
j/2

p

)∫ 1

−1

x2p+k
√

1− x2
sin(m arccosx)

sin(arccosx)
dx

=
2

j + 1

j/2∑
p=0

(−1)p
(
j/2

p

)∫ π

0

(cos t)2p+k cos t
sinmt

sin t
sin tdt

=
2

j + 1

j/2∑
p=0

(−1)p
(
j/2

p

)∫ π

0

(cos t)2p+k+1 sinmtdt.

Now, note that (cos t)2p+k+1 is a trigonometric polynomial of degree 2p+ k+ 1 ≤ j+ k+ 1 < m. And it can
easily be shown that if Tn(t) is a polynomial of degree n < m, then

∫ π
0
Tn(t) sinmtdt = 0. Thus the integral

is 0 for j even as well, and the proof is complete.

Since Uωm ∈ Pm−1(D), we see that span{An} ⊂ Pn−1(R2), where

An := {Uωm : ω ∈ Ωm, m = 1, 2, . . . , n},

Moreover, by lemma 7 we see that the functions in An for an orthonormal system for Pn−1(D). Lastly, one
may easily find that dim(Pn−1(D)) = #An. Therefore, we have that the set of functions in An form an
orthonormal basis for Pn−1(R2). Since we have already shown the density of the polynomials over the disk,
we have proven the following theorem.

Theorem 8. Any function f ∈ L2(D) can be represented as

f(x) =

∞∑
m=1

∑
ω∈Ωm

〈f, Uωm〉Uωm(x). (6)

Proof. Since {Uωm : ω ∈ Ωm, m = 1, 2, . . . , } forms an orthonormal basis for Pn−1(D), the result follows
directly from the Weierstrass approximation theorem.

Reconstruction using Ridge functions
We will show how the representation (6) of a function f on the unit disk can be used to reconstruct a function
from its Radon transform. This involves just a few simple computations. Let f ∈ L2(D), and to simplify
computations, extend f and Uωm to be 0 for x /∈ D. Again let ξ = (cosω, sinω) and assume ω ∈ Ωm\{π}
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then

π〈f, Uωm〉 =

∫∫
D
f(x)Um(x · ξ)dydx

=

∫∫
R2

f(x)Um(x · ξ)dydx

=

∫ ∞
−∞

∫ ∞
−∞

f

(
p sinω,

t− p sinω cosω

sinω

)
Um(t)dpdt

=

∫ ∞
∞

(∫
x·ξ=t

f(x, y)ds

)
Um(t)dt

=

∫ ∞
−∞

f̌(t, ξ)Um(t)dt

=

∫ 1

−1

f̌(t, ξ)Um(t)dt,

where we applied the substitution t = x · ξ for y, and x = p sinω for x. In the case ω = π, performing similar
computations, we obtain the same result. Substituting these expressions into (6) gives

f(x) =
1

π

∞∑
m=1

∑
ω∈Ωm

(∫ 1

−1

f̌(t, ξ)Um(t)dt

)
Uωm(x).

Thus this expression gives us a way to recover a function f ∈ L2(D) given the Radon transform of f .
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